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A tethered rotorcraft model is developed using a computationally efficient recursive 
tether model. The recursive rigid-body tether model results in unconstrained ordinary 
differential equations and maintains much of the simplicity of simple lumped mass tether 
models while avoiding numerical difficulties associated with using many stiff elastic 
elements with low mass. Further efficiency is achieved by treating each tether link as a 
body of revolution and assuming that tether spin is negligible to the dynamics. The tether 
is attached to a 6 degree of freedom rotorcraft model using a single visco-elastic element. 
The final recursive tether-rotorcraft model is well suited for a variety of trade studies 
required for design and analysis of such systems due to its low computational cost and 
numerical robustness. Simulations are used to show how the proposed recursive model 
can be used to investigate the dynamic response and tether loads for a small 3 kg tethered 
rotorcraft. 
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Nomenclature 

 
a   = lift curve slope of the main rotor. 

c
ja   = acceleration of jth connection joint with respect to the inertial frame 
m
ja   = acceleration of mass center of jth link with respect to the inertial frame 

bj  = jth link of the tether (ground link j = 0, root link j = 1, parent body j = jp) 
cj  = jth connection joint (ground connection joint j = 0)  

MRc   = main rotor chord. 

cT  = tether connection to rotorcraft  
CDX, CDY, CDZ  = fuselage drag coefficients. 
CDj  = tether drag coefficient 
CS  = tether damping coefficient 
Cv  = viscous damping coefficient 
d  = diameter of the tether 
En  = n x n identity matrix 
FA, MA = rotorcraft aerodynamic forces and moments 
FDj   =  drag force for jth link  
FT ,FT   = visco-elastic element tension vector and magnitude 
FFUS  = drag from fuselage 
FMR, MMR = main rotor force and moment 
FTR, MTR = tail rotor force and moment 
Fj    = 5 x 1 force matrix for jth link 
FW   = rotorcraft weight 
iB, jB,kB  = rotorcraft body frame unit vectors 
iI, jI,kI.  = inertial frame unit vectors 
IB  = rotorcraft inertia matrix 
Inn  = mass moment of inertia about i, j, k body axes with n = x, y, z respectively 
Ij  = inertia matrix of jth body 

jI
~

  =  2 x 2 link inertia matrix consisting of Iyy and Izz 

k  = rotor head stiffness 
KLAT, KLON = steady state flapping gains 
Ks, Kv  = static and viscous stiffness 
Lj  =  moment in jth connection joint acting on the j+1 link and the jth link respectively  


jL   = 2 x 1 moment vector consisting of j and k components of Lj 

njL   = nth component of Lj with n = x, y, z respectively 

Lve  = visco-elastic element unstretched length 
lj  = length of individual jth link 
lT  = overall tether length 
mB   = rotorcraft mass 
mj   = mass of link j 
mT  =  total mass of the tether 
N  = total number of tether links 
pB, qB, rB = rotorcraft angular velocity components 
pj, qj, rj = angular velocity components of the jth link 
q0j, q1j, q2j, q3j  =  quaternion parameters for jth link   

m
jr   = position vector from connection joint j-1 to mass center j   
c
jr   = position vector from connection joint j-1 to connection joint j 
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ct
cgr   = position from the rotorcraft mass center to cT 

RMR  = main rotor radius 
 Rj  = reaction in jth connection joint acting on the j+1 link and the jth link respectively  

c
jŜ   = 2 x 3 sub matrix of skew symmetric cross product operator for position vector for c

jr  
m
jŜ   = 2 x 3 sub matrix of skew symmetric cross product operator for position vector for m

jr  
m
jS

~   = 2 x 2 sub matrix for skew symmetric cross product operator for position vector m
jr  

sj  = frontal area of jth link 

ves   = visco-elastic element stretch 

TRT   = tail rotor thrust 
B
IT   = transformation from inertial to rotorcraft body frame 
j

IT   = transformation from inertial to jth body frame 
j

1-jT   = transformation from the j-1 body frame to the jth body frame 
j

1-jT̂   = 2 x 2 sub matrix of the second and third columns of the second and third rows of j
1-jT  

j
1-jT

~   = 1 x 2 sub matrix of the second and third elements of the first row of j
1-jT   

u, v, w  =  rotorcraft body velocity components  
uw, vw, ww =  wind velocity components  

,lat lonu u  = lateral and longitudinal swash plate controls 

colu   = main rotor collective pitch control. 

V , V   =  rotorcraft velocity vector and magnitude 
Vj  = mass center velocity of the jth link 

jv   = 5 x 1 acceleration vector consisting components of Ijα
~ and 

1
c
ja  respectively 

VTIP  = main rotor tip speed.  
Wj  = weight of jth link  
xcj, xmj  = length from j-1 connection to the jth connection and mass center 
α  = longitudinal main rotor flapping angle 
β  = lateral main rotor flapping angle 
αj/I   =  angular acceleration vector of jth with respect to the inertial frame 

j/Iα~   = 2 x 1 angular acceleration vector consisting of j and k components of j/Iα  

Δx, Δy, Δz = visco-elastic element displacement 
τ   = rotor time constant 

Bω   = rotorcraft angular velocity vector 

j/Iω   = angular velocity vector of jth link with respect to the inertial frame 

1-j/jω   = relative angular velocity of jth link with respect to the j-1 link  

jω   = 2 x 1 angular acceleration vector consisting of the j and k components of 1jjω   

j/Iω~   = 2 x 1 angular velocity vector consisting of j and k components of j/Iω   

ωnj
  = nth component of 1-j/jω  with n = x, y, z respectively 

MR   = main rotor angular velocity 

B ,
B ,

B = rotorcraft  Euler angles 

 j
, j

, j  = jth link Euler angles 

   = atmospheric density 
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I. Introduction 

INDING, tracking, and monitoring events and activities of interest on a continuous basis are critically 
important for intelligence, surveillance, and reconnaissance (ISR). In particular it is desirable to 

monitor large areas of greater than ten square kilometers with either radar or high resolution cameras for 
distinguishing and tracking people and vehicles. In addition, it is desirable to monitor these areas on a 
persistent basis using unmanned autonomous systems (UAS). Another key component in ISR is the 
communications-relay platform. Traditional mast-mounted antennas are limited in range and constrain the 
commander to available terrain. With a traditional mast-mounted antenna in typical terrain about 2,800 
km2of battle space is covered. Line-of-sight coverage in the same terrain for an antenna at 300 m AGL 
covers about 31,000 km2, more than 10 times the mast-mounted antenna coverage. 

The concept of persistent surveillance as a transformational capability has circulated within the 
Department of Defense for many years. Persistent surveillance, also known as persistent intelligence, 
surveillance, and reconnaissance (ISR), is an often-used term to describe the need for future ISR 
capabilities to qualitatively transform intelligence support to operational and tactical commands. The idea 
surfaces in many forms, including defense program reviews and congressional testimony. Each 
expression envisions a system achieving near-perfect knowledge and removing uncertainty in war. 
Persistence means that when global, theater, or local reconnaissance finds something of intelligence or 
actionable interest, ISR systems, including processing and analytic systems, maintain constant, enduring 
contact with the target. This increases understanding about the target, which enables a faster decision 
cycle at all levels of command and supports the application of precision force to achieve desired effects. 
 Conventional tethered aerostats support both portions of ISR missions: providing high-resolution 
imagery to ground installations, and providing communications and data-relay to wide areas over any 
terrain. Unlike fixed-wing aircraft or helicopters, aerostats are lighter-than-air (LTA) typically using 
helium to stay aloft and are tethered to the ground, by a cable that also provides power. The most well 
established LTA program today is the Tethered Aerostat Radar System (TARS) that has been operating 
since 1980 at sites along the southern U.S. border. Each 71 m aerostat, can lift radar or other sensors to a 
height of 3.5 km, and detect targets out to 500 km. The aerostat can theoretically stay aloft for days at a 
time and carries the AN/DPS-5 S-band and AN/TPS-63 search radars. Endurance is limited by airborne 
fuel powering the radar's generator. 
 The Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS) uses the same 
71 m TARS aerostat platform for the cruise-missile-defense radars being developed. Each JLENS system 
consists of two aerostats, one containing a broad area surveillance radar (SuR) to detect cruise missiles 
and the other a precision radar (PTIR) to track the cruise missile with sufficient precision to guide an 
intercepting weapon. Following initial threat detection by the SuR, the PTIR takes over to generate a fire 
solution for available surface-to-air missiles. JLENS is seen by some as the centerpiece of a larger attempt 
to seamlessly link together numerous sensors across services to build a “single integrated air picture,” that 
will enable effective cruise missile defense. The US Army has also deployed a 17m Rapid Aerostat Initial 
Development (RAID) for Operation Enduring Freedom in 2001. The RAID system is essentially a much 
smaller version of JLENS operating at approximately 300m, has a payload of 90 kg, and provides short-
range area surveillance and early warning against attacks with small arms, rockets and mortars. 

Although the aerostat programs provide low-cost surveillance, they are dependent on weather 
conditions. One of the most severe limitations is they must be brought to ground in high winds. Specific 
flying weather restrictions are established for each system ensuring safe flight. Operating characteristics 
of aerostats also depend on base altitude and temperature. For example, on a cool day stationed at sea 
level, the aerostat will fly higher than on a warm day stationed at 4,000 mean sea level. The typical 
endurance is around 15 days, the time when helium refilling is required, but effective endurance is often 
limited by being grounded in high winds. Another significant limitation of tethered aerostats is their 
mobility; even the smaller 15-meter RAID is cumbersome to move.  
 This report develops a small tethered electric rotorcraft as an attractive alternative to a tethered 
aerostat. A tethered rotorcraft could be either a conventional main rotor and tail configuration or four 
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rotor system. In either case the footprint would be significantly smaller than an aerostat of similar 
payload. The tether would be used to provide power to the system and as a high speed fiber optic 
communication link. A substantial benefit of a small tethered rotorcraft over aerostats is the ability to fly 
in high winds. A small tethered rotorcraft provides a small, highly mobile, inexpensive platform which 
can be used for both persistent ISR and as a data-relay. 

Modeling of tethered systems has been proposed for a variety of systems including: 2-D analysis of 
aerostats in response to vertical gusts [1], tethered high altitude balloons [2], and tri-tethered systems 
[3,4]. In all cases, the aerostat has a similar model which includes aerodynamics, buoyancy, and apparent 
mass while significantly different approaches are taken in modeling the tether. While the tether is 
continuous, it is often modeled using discrete elements. The simplest tether models use lumped mass 
bodies connected with elastic elements [3,4] where each mass has only three degrees of freedom (DOF). 
A similar lumped mass approach was used by Frost and Costello [5] when modeling connected 
munitions. A limitation of the simple lumped mass model is that for stiff tethers, the elastic elements must 
also be stiff to mimic low strain resulting in potentially high frequency vibrations. Addition of a visco-
elastic element in [6] improves performance of the lumped mass model for stiff tethers while also adding 
an extra state for each visco-elastic element. Regardless of which element is used, elastic or visco-elastic, 
the lumped mass models are appealing because they result in extremely simple, computationally efficient 
models, even for large numbers of elements. Tether modeling complexity is increased in [2] where beam 
elements are used rather than lumped masses. Using beam elements allows modeling of bending moments 
but requires a finite element nonlinear solver so the computational burden is much higher than the lumped 
mass models.  Similarly, Ref. [1] uses a more complex 2-D model where tether elements are modeled as 
partial differential equation requiring an implicit finite difference algorithm coupled with a Newton-
Raphson iterative scheme for a solution. 

 Tethered rotorcrafts typically result in low tension in the tethers limited by the thrust. Often the 
tether is comprised of a conductive core, either copper or aluminum, and a fiber optic cable. Strength of 
the tether is usually sufficient so that limitations in strain on fiber optics are not exceeded, resulting in the 
tether strain being small compared to the tether sway and surge. This report models the tether using a 
chain of N bodies connected by spherical joints rather than using stiff elastic elements and lumped 
masses. The proposed model results in unconstrained ordinary differential equations and maintains much 
of the simplicity of the lumped mass models while eliminating the numerical problems associated with 
extremely stiff elastic elements. The tether model takes the form of an open chain common to multi-body 
dynamics which can be solved using either an order N3 method by inverting a system mass matrix [7,8] or 
by recursive rigid-body dynamics which is order N [9]. The later approach is taken here because as shown 
in [10] the order N method is more computationally efficient as the number of bodies N increases. 
Computations are further decreased by treating each link as a body of revolution and assuming that tether 
spin is negligible to the dynamics where each link then only has two degrees of freedoms. The proposed 
recursive rigid-body tether formulation results in computations on the same order as the three degree of 
freedom lumped mass models. Furthermore, elimination of high stiffness elements allows larger 
integration time steps further improving computation speeds. The efficient recursive tether model is 
coupled to the rotorcraft by a single visco-elastic element. The proposed efficient recursive tether-
rotorcraft model is well suited for a variety of trade studies required for design and analysis due to its low 
computational cost and numerical robustness. As a result, the proposed model can be considered a 
supplement to alternative approaches requiring an iterative scheme to solve partial differential equations 
[1] and a finite element nonlinear solver [2] where the computational burden may be prohibitive when 
running large numbers of simulations for trade studies. 

II. System Description 

The tether is divided into N bodies connected by spherical joints with each link being a body of 
revolution. Figure 1 shows the tether attached to the ground with the jth body, bj, having two connections, 
joints cj-1 and cj. The Nth body, bN, is the tether terminal link, body b1 is the root link, where connection c0 
is stationary. Connection c0 is attached to a fixed or inertial frame (I) defined by three orthogonal unit 
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vectors, iI, jI, and kI. A link reference frame is assigned to each link as shown with the origin at the link’s 
mass center and ij along the axis of revolution with jj and kj defined to form an orthogonal triad. An 
rotorcraft body frame with unit vectors iB, jB, and kB is located at the rotorcraft mass center with iB aligned 
with the rotorcraft’s longitudinal axis and kB in the vertical plane of symmetry. The rotorcraft and tether 
are connected by a single visco-elastic element from the rotorcraft harness connection cT to tether terminal 
connection cN.   

 

 
Figure 1. Tethered rotorcraft schematic. 

 
Orientation of the rotorcraft is defined by a sequence of three body-fixed rotations. Starting from the 

inertial frame, the body frame is defined by rotations about the k, j, and i axes by angles ψB, θB, and φB, 
respectively resulting in the transformation from the inertial frame, I, to the B frame  

 
B B B B B

B B B B B B B B B B B B

B B B B B B B B B B B B

B
I

c c c s s

s s c c s s s s c c s c

c s c s s c s s s c c c

    

           

           

 
 

   
   

T  (1) 

 

where sin(χ) = sχ, cos(χ) = cχ. Similarly, orientation of the jth link frame is defined by a sequence of three 
body-fixed rotations where the jth body frame is defined by rotations about the k, j, and i axes by angles 
ψj, θj, and φj, respectively. In order to avoid a singularity in the rotation kinematics, the link orientation 
can alternatively be defined by the four quaternion parameters q0j, q1j, q2j, and q3j [11] resulting in the 
transformation from the inertial frame, I, to the j frame given by    
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2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 2 3 0 1

2 2
1 3 0 2 2 3 0 1 0 3

2 1 2 2 2 2 2

2 2 2 1 2 2 2

2 2 2 2 2 1 2
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j

I j j j j j j j j j j

j j j j j j j j j j

q q q q q q q q q q
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     

T  (2) 

where 
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sin cos cos cos sin sin
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j

j

j

j

q

q

q

q

     

     

     

     

 

 

 

 

 (3) 

 
A transformation from the j-1 frame to the j frame can be formed using (2) and is given as 

  -

Tj I I
j j jT T T1 1  (4) 

Position vectors from the j-1 connection to the jth body mass center are conveniently expressed in the bj 
frame as m

j mj jxr i . Similarly, the vector from connection j-1 to connection j, also expressed in the bj frame 

is defined as c
j cj jxr i .  Both vectors, m

jr  and c
jr , have only an ij component as a result of each body’s 

symmetry. 

III. Rotorcraft Model 

The rotorcraft is modeled as a rigid 6 DOF body including three inertial positions of the rotorcraft 
mass center, x, y, z and the three Euler angles ψB, θB, and φB. Body frame velocity components of the 
rotorcraft mass center are u, v, w while

Bω , the angular velocity of the rotorcraft also in the body frame has 
components pB, qB, rB. Forces and moments acting on the rotorcraft come from weight, aerodynamic 
forces from the main rotor, tail rotor and fuselage, and the visco-elastic connection from the rotorcraft 
harness to the tether.  

A. Rotorcraft Forces and Moments 
 Weight contribution is given below in Eq. (5) while fuselage drag is provided in Eq. (6). 

 
B

B B

B B

W B

s
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

 

 
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  
 
 

F  (5) 
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DX

A DY

DZ

C u

V S C v

C w


 
    
 
 

FUSF  (6) 

Forces from the main and tail rotors are generated though the four control inputs latu , lonu , colu  and TRT . 

Tilting of the main rotor is achieved through lateral and longitudinal movement of the swash plate by latu  

and lonu . Thrust of the main rotor is controlled through collective pitch colu while thrust of the tail rotor 

TRT  is used directly as a control variable. Thrust from the main rotor can be described as: 12,13  

  2 2
MR MR MR MR TT R R C    (7) 



 
 

 

8

where, the thrust coefficient TC can be found by solving  (8) and (9) using an iterative gradient descent 

method.  
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2 3 2 2
z

T col

a
C u
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 (8) 
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Where,  

 
   2 2

w w

TIP

u u v v

V


  
  (10) 

 w
z

TIP

w w

V
 

  (11) 

 2 MR MRc R   (12) 

 
Tail rotor thrust is defined in a similar manner as the main rotor thrust. 
 Lateral and longitudinal control cause cyclic changes in the main rotor blade pitch resulting in the 
blades flapping creating moments and differential lift. It has been shown that the two first-order flapping 
equations in (13) and (14) can accurately represent the dynamic motion12,13 
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LON
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u u K
q u

V

 
   

 
      

  (13) 
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y TIP

v v K
p u

V

 
   

 
       

  (14) 

where, LATK and LONK are gains describing the resulting steady state flapping angles from a lateral and 

longitudinal swash plate input,  is the rotor time constant and: 

 w
x

TIP

u u

V
 

  (15) 

 w
y

TIP

v v

V
 

  (16) 

The thrust of the main and tail rotors in the helicopter reference frame can then be written as, 
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MRF  (17) 
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0
TRT

 
   
 
 

TRF  (18) 

 Moments from the main rotor have contributions from motor torque, tilting of the trust vector and 
rotor hub stiffness. Torque from the motor can be expressed as a pure yawing moment in the rotor frame 
as  

  2 3
MR MR MR MR QN R R C    (19) 



 
 

 

9

   27
1

8 3
D

Q T z

C
C C

       
 

 (20) 

Torsional stiffness of the rotor head is modeled as a linear torsional spring with stiffness k. Tilting of the 
thrust vector from the flapping angles results in pitching and yawing moments. Combining all moments 
from the main rotor and expressing in the helicopter reference frame results in 

 

 2 21
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s N
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

 
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



      
      

MRM







 (21) 

The tail rotor generates a yawing moment from the tail thrust being behind the mass center. 

 

0

0
TR trT h

 
   
 
 

TRM  (22) 

B. Visco-elastic link 
The visco-elastic element connecting the rotorcraft and tether is comprised of a spring with static 

stiffness Ks in parallel with a viscous spring of stiffness Kv and viscous damper with damping coefficient 
Cv. Visco-elastic line force is written in terms of components Δx, Δy, and Δz, of the difference vector 
formed by subtracting the inertial position of the rotorcraft connection cT  and the tether connection cN. 
Stretch of the visco-elastic element becomes 2 2 2

ves x y z    and the stretch rate is ves . Using the 

difference vector components, the line force vector is written as 

  T
T

ve

x
F

y
s

z

 
   
  

F  (23) 

Equation (24) provides the differential equation for the visco-elastic internal force FT in terms of the 
stretch and stretch rate with Lve being the unstretched length. 

 

 
( ) ( ), 0

0 0

v s
v s ve ve ve ve vev

vT T
v

ve ve
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K K s s L s LK

CF F
C

s L

       
  


  (24) 

The first condition in (24) represents the visco-elastic element in tension while the second represents the 
slack case where the internal force decays to zero. 

C. Rotorcraft Dynamic Equations 
 Final dynamic equations are formed by summing forces and moments about the system CG both in the 
rotorcraft body reference frame and equating to the time derivative of linear and angular momentum 
respectively.  

    1 B B
I T B

B

u u

v v
m

w w

   
           
   
   

W MR TR FUSF F F F T F S ω







 (25) 
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MR TRI M M r T F S ω I







 (26) 

where ct
cgr is the position vectors from the rotorcraft mass center to the tether connection, IB is the 

rotorcraft inertia matrix, and the common convention is used that a cross product of any vector r with 
components rx, ry, and rz expressed in a frame C is written: 
 

  
0

0

0

z y
C

x x

y x

r r

r r

r r

 
    
  

r S r  (27) 

IV. Recursive Tether Model 

The tether configuration in Fig. 1 has spherical joints connecting the N slender bodies with no applied 
twisting torque at the ground or terminal link.  The combination results in the spinning dynamics of each 
body having a minimal affect of the tether’s overall motion. Elimination of tether spin will later aid in 
efficient computation of recursive dynamics. Angular velocity of the jth body with respect to the inertial 
frame of reference is then defined as 

 j jq r j I j jω j k  (28) 

where the spin rate pj is zero.  The angular velocity of the jth link, Ijω , may also be written as the sum of 

the previous body’s angular velocity and the relative angular velocity of the jth link and its preceding link 

1j jω : 

 j
I j j j j I   Tj 1 1 1ω ω ω  (29) 

with 1j jω expressed in the bj frame. Equation (29) can equivalently be expressed in component form 

 1

1

0 0xj
j

I yj j j j

zj j j

q q

r r




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

     
            
     
     

Tj 1ω  (30) 

where ωxj, ωyj, and ωzj are the components of the relative angular velocity ωj/j-1. Equation (30) can be 
separated into two portions, first the requirement that 

 
1

1

jj
xj j

j

q

r
 




 
   

 
T 1  (31) 

where j
jT 1 is a 1 x 2 sub matrix formed from the second and third elements of the first row of j

jT 1 , and 
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
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
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

     
       
     

T
j I 1ω  (32) 

where ˆ j
jT 1  is a 2 x 2 sub matrix formed from the second and third columns of the second and third rows 

of j
jT 1 . A special case occurs at the root link b1 because for the ground b0, both q0 and r0 are zero, so that 

ωx1=0  and 
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    
   

 1 Iω  (33)   

Differentiation of the angular velocity with respect to the inertial frame results in the angular 
acceleration of the jth body taking the recursive form 

 j
j      T

j I j j 1 j I j j 1 1 j 1 Iα ω ω ω α  (34) 

where 1jjω  is the angular acceleration of bj with respect to bj-1 expressed in the bj frame. Expansion of 

(34) into matrix form results in 

 1

1

0 0xj j yj j zj
j

I j yj j xj j j

j zj j xj j

r q

q r q

r q r
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 

 



        
                 
              

T



 

 
j 1α  (35) 

The first row of (35) is automatically satisfied by (31). Substitution of (31) into the remaining two 
equations results in   
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T T
 


 1 1α  (36) 

which can be written compactly as 

 I1j
j

1jjIj αωα  ~ˆ~ Tλ j  (37) 
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

   
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λ Tj 1  (38) 

where  T

j yj zj ω   . 

Acceleration of the jth body's mass center, m
ja , and acceleration  of the  jth connection joint, c

ja ,  for j = 

0 to  
(N – 1) can be written in the bj frame as 

 1
m j c m m
j j j j I j j      T 1 j I j Ia a α r ω ω r  (39) 

 1
c j c c c
j j j j j     T 1 j I j I j Ia a - r α ω ω r  (40) 

where it is noted that c
0a = 0 since joint zero is attached to the ground.  

The angular acceleration components of bj (37) and acceleration of the j-1 joint (40) can be combined 

into a 5 x 1 acceleration vector jv = { Ijα
~

 
c
j1a }T and written   

 jjj ΛωGvDv   j1jj   (41) 
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A. Terminal Body Recursive Dynamics 
The necessary dynamic equations for the tether model are formed using a Newtonian approach.  A 

total of 2N vector equations are assembled where these equations will consist of N force equations and N 
moment equations. Forces on each body include weight, Wj, and an external force ,FDj, associated with it, 
both defined in the inertial frame. In addition, a reaction force -Rj on body bj, defined in the bj frame, 
occurs at the jth joint for all j except for the terminal body. An equal, but opposite reaction Rj is present on 
body bj+1. A moment -Lj on body bj, also defined in the bj frame, occurs at the jth joint for all j except for 
the terminal body. An equal but opposite moment Lj is also present on body bj+1.  Neglecting spin 
dynamics requires that the moment Lj cannot impart a twisting moment i.e. internal joint moments are 
only from relative link bending and bending rates. The terminal link also has an external load FT from the 
visco-elastic element applied at the end of the terminal body. Formation of the dynamic equations is 
achieved by summing forces and moments for individual links with the moment equation expressed in the 
j body frame and the force equation expressed in the j-1 body frame. The two vector equations can then 
be put in a recursive form where moving through the tether from the terminal link back toward the root 
link, equations for the j-1 links contain terms from the jth link such that these relationships become 
coupled. The recursive dynamic equations are developed below first for a terminal link then for a non-
terminal link.  

Equating the time derivative of linear momentum with the summation of forces on the j-1 body frame 
for a terminal link j results in 

   m
j

Tj
1-jTjDj

1-j
I1-j a)FWF(R TT jm  (44) 

Similarly, summing moments about the connection joint cj-1 for the terminal link and equating to the time 
derivative of angular momentum in the j body frame yields 
 

    / / /T j j I j I j j I jm         T T F T I Im j c j j m m
j I Dj j j I j -1 j -1 j jr F W r L α ω ω r a

 
(45) 

 
The i component of both sides of the moment summation (45) reduce to zero due to each link being a 
body of revolution and the fact that the position vector from connection joint j-1 to the mass center of the 
terminal link is defined such that it only has an i component. The remaining equations for the terminal 
link are assembled into a 5 x 1 force vector, Fj, arranged such that the first two equations represent the 
two nonzero components of the moment equation while the remaining three equations are components of 
the force equation (44). The force vector takes the form 
   Tjjj ΓvMF    (46) 

 
where (39) is incorporated in to both (44) and (45) with the following definitions: 
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The terms   m
jIjIj

m
j rωωr  jm  and IjjIj ωω I from (45) vanish due to the fact that the 

position vector from connection joint j-1 to the mass center of the terminal link is defined such that it only 
has only an i component, the links are bodies of revolution, and the spin rate in (28) is zero. 
 Substituting (31), the kinematic relationship for the acceleration vector, jv  into (46) gives a 

relationship for the force vector, Fj, in terms of the relative angular acceleration vector, jω , expressed as 

 
   Tjj1-jjjj ΓΛωGvDMF  j  (50) 

 
The relative angular acceleration vector, jω is then found by premultiplying equation (50) by Gj

T and 

noting that Gj
TFj = 0: 

 

    Tjj1-jjj
T
j

-1

jj
T
j ΓΛMvDMGGMGω   j  (51) 

 
Substitution of (51) and (41) into the force vector in (46) results in a final expression for the terminal 
body’s force vector expressed only using its forces and the parent body’s joint accelerations: 
 

 j1-jjjj ΓvDMF ˆˆ    (52) 

where 

   1
 jj

T
jjjj GMGGMK  (53) 

 jjT
a
j ΛMΓΓ   (54) 

 a
j

T
jj

a
jj ΓGKΓΓ ˆ  (55) 

 j
T
jjjj MGK -MM ˆ  (56) 

B. Non-terminal Body Recursive Dynamics 
Following similar steps as outlined above for the terminal link ,vector equations for the non-terminal 

links can be formed.  The forces are summed on each of these links while moments are summed about the 
cj-1 connection joint for each jth link in the tether. Again, the moment equations are expressed in the j body 
frame while the force equations are expressed in the j-1 body frame. All non-terminal links can be shown 
to have an equivalent recursive form 

     m
j

Tj
1-jjDj

1-j
Ij

Tj
1-j1-j aWFRR TTT jm )(  (57) 

 
by summing forces and equating to the linear momentum. The moment equation then takes the form 
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Equations (57) and (58) may now be assembled into matrix form in a similar fashion to that of the 
terminal link. The i component of the moment equation vanishes and the matrix form reduces to a 5 x 1 
system. Non-terminal links all have the equivalent form 
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1jjjjj  FDΓvMF   (59) 
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with 
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where the terms  m
jIjIj

m
j rωωr  jm  and IjjIj ωω I become zero just as with the terminal 

link. The force vector (59) for the jth body is coupled to the force vector from the previous link by the 

term 1j
T

1j  FD . It can be shown that the force vector for any non-terminal link can be written just as the 

terminal link (52) where it depends on its forces and the parent body’s joint accelerations. Consider (59) 
for the terminal link’s parent. Substitution of the terminal link force vector (52) into (59) results in  
 

 jjjj ΓvMF
~~    (61) 

where 

 1j1j
T

1jjj  DMDMM ˆ~
 (62)  

 1j
T

1jjj  ΓDΓΓ ˆ~
 (63) 

 
Substitution of (41) into (61) gives a relationship for the force vector, Fj, in terms of the relative angular 
acceleration vector, jω .Similar to the terminal link, multiplying the result by Gj

T and noting that Gj
TFj = 

0, jω for non-terminal links takes the form 

    a
j1-jjj

T
j

-1

jj
T
j ΓvDMGGMGω  

~~
j  (64) 

 
where 

 jjj
a
j ΛMΓΓ

~~   (65) 

 
The non-terminal link force vector then takes the form  
 

 j1-jjjj ΓvDMF ˆˆ    (66) 

by combining (41) and (64) with (61) and defining, 

   1~~ 
 jj

T
jjjj GMGGMK  (67) 

 a
j

T
jjjjjj ΓGKΛMΓΓ  ~ˆ  (68) 

 j
T
jjjj MGKMM
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C. Solution Procedure 
The recursive solution begins with a backward pass through the tether system starting at the terminal 

link. At the terminal link (j = N) the force vector, Fj in (46) and (52) can be formed. Formation of force 
vectors for all non-terminal links then follows for j = N-1 to 1 using (61) and (66). Upon reaching the root 
link (j = 1), the acceleration vector 1v  in (61) becomes solvable. Since the root link is attached to the 

ground, c
0a is zero and the solution to I1α

~  only requires the inversion of a 2 x 2 matrix. Therefore, at the 
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end of the backwards pass the solution to 1v is found. Once the acceleration vector, 1v , for the root link is 

known, a forward pass is used to find the angular acceleration vector,  jω , and the acceleration vector, 

jv , using (64) and (41) for j = 2 to N-1 then (51) and (41) for j = N. Completion of the forward pass 

results in the solution to the N angular accelerations, Ijα
~ , for j = 1 to N required for numerical 

integration. 

V. Simulations 

A. System Parameters 
In order to demonstrate application of the proposed model and it’s utility in analyzing the rotorcraft 

and tether dynamics along with tether loads, simulations of an example TREX 600 rotorcraft with a 50m 
of tether are shown. Characteristics of the rotorcraft are provided below in Table 1. The tether has a 4 mm 
diameter, total mass of 0.6 kg, and is divided into 9 segments with joint damping coefficient being 0.017 
N-s. The visco-elastic element has an unstretched length, Lve, of 1m and Ks, Kv, and Cv of 175 N/m, 400 
N/m, and 40 N-s/m, respectively. 

 
Table 1. Rotorcraft Parameters 

Parameter Value Units 

XXI  0.135 2kg m  

YYI  0.263 2kg m  

ZZI  0.210 2kg m  
m  3.3 kg  

MRR  0.68 m

MRc  0.057 m

zh  0.305 m

trl  -0.80 m

0DC  0.01 - 

a  5.5 1/ rad  

MR  158 /rad s  

x    -0.01 rad  

y    0.01 rad  

,LAT LONK K  0.8 - 

k  45 /N m rad  
  0.09 sec

, ,DX DY DZC C C 0.2 - 

 
 

B. Rotorcraft Controller 
 

During the simulation the rotorcraft tracks a desired position and orientation. In hover the desired 
altitude simply becomes the desired height above ground. Desired roll and pitch are related to the position 
of the helicopter.  Figure 2 shows a top view of a helicopter with a desired hover location. A vector r 
describing the position error in the helicopter frame is defined in (70). Equations (71) and (72) relate the 



 
 

 

16

desired roll and pitch to the desired location through terms proportional to the position and velocity 
errors. Desired roll also includes a constant to compensate for tail thrust. 

 
Fig. 2 Desired Roll and Pitch Geometry 
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         

r  (70) 

 DES P y D y ssK r K r K      (71) 

 DES P x D xK r K r     (72) 

 
The four control inputs for the rotorcraft are then determined by a simple PID controller according to: 

 
0

0

( - )

( - )

( - )

( - )

lat P B DES D B

lon P B DES D B

col z Pz DES Dz

TR P B DES D B

u K K p

u K K q

u K K z z K z

T K K K r

 

 

  

 

 

 

 

 

  
  


  (73) 

 

C. Tethered Rotorcraft Simulations  
 

In the initial simulation, the rotorcraft is initially directly above the ground connection and the tether 
vertical. Orientation of the rotorcraft is initially facing in the opposite direction of iI with ψB being π. 
Rotorcraft, visco-elastic, and recursive tether differential equations are numerically integrated using a 
fourth order Runge-Kutta algorithm with time step of 0.02 seconds. Gains for desired roll and pitch 

, ,p D ssK K K where selected as 0.007, 0.07 and 0.03 rad, respectively. The remaining PID gains are 

provided in Table 2. The desired position is x = 10m, y = 0m , z = 47m and the desired orientation is 
0   deg and    deg.  
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Table 2. PID Gains 

Gain Value 

PK   -0.05 

DK   -0.004 

PK   -0.05 

DK   -0.004 

0zK  0.148 

PzK  0.02 

DzK  0.006 

0K  -1.07 

PK   1.0 

DK   0.5 

 
 

Figures 3 and 4 show the trajectory for a 35 second simulation while Fig. 5 shows the tether 
orientation at the final time of 35 seconds. Tension in the tether at the connection point is shown in Fig. 6. 
Initially as the rotorcraft descends the tension reduces until at approximately 8 seconds the rotorcraft 
stops descending and the tension increases as the tether’s momentum is stopped. Also high frequency 
dynamics can be seen as the tether tension changes. The rotorcraft controls, orientation, and angular 
velocities are shown in Figs. 7, 8, and 9.   

 

 
Figure 3. 3-D tethered rotorcraft CG position. 
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Figure 4. Horizontal view of rotorcraft CG. 
 
 

 
Figure 5. Final 9-link tether orientation. 
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Figure 6. Visco-elastic tension. 

 

 
Figure 7. Rotorcraft controls. 
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Figure 8. Rotorcraft Euler angles. 

 
 

 
Figure 9. Rotorcraft angular velocities. 
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